Sensor+Test 2016: MEMS-Sensoren

Spektrometer für die Hosentasche

28. April 2016, 10:43 Uhr | Marcel Consée
QCL
QCL-Modul mit integriertem MEMS-Beugungsgitter.
© Fraunhofer IAF

Die Miniaturisierung auch komplexer Messsysteme schreitet fort, und so ist es nur noch eine Frage der Zeit, bis sich Spektrometer im Smartphone befinden.

Das Potenzial spektroskopischer Messungen ist enorm. Der einzigartige »Fingerabdruck« liefert detaillierte Informationen zu Feststoffen, Flüssigkeiten und Gasen. Die Messungen selbst sind zumeist sehr schnell möglich, unkompliziert und kostenschonend, da die Proben nicht aufwendig vorbereitet werden müssen und durch die Messungen nicht zerstört werden.

Ziel der Wissenschaftlerinnen und Wissenschaftler am Fraunhofer IPMS ist es, immer kleinere und robuste Spektrometer zu entwickeln, die für den Feldeinsatz geeignet sind oder in industrielle Messtechnik integriert werden können. So haben die Forscher ein mobiles MEMS-Gitter-Spektrometer im Würfelzuckerformat entwickelt, mit dessen Hilfe, flüssige und feste Stoffe durch Analyse des Lichts im nahen Infrarotbereich (950 nm-1900 nm) untersucht werden können. Das System, das zum Beispiel verschiedene Pulver wie Zucker, Süßstoff oder Salz unterscheiden kann, ist mit einem Volumen von nur 2,1 cm³ etwa 30 Prozent kleiner als ein gewöhnliches Stück Würfelzucker und wird über ein gewöhnliches Smartphone gesteuert.

Es erlaubt Messungen im Wellenlängenbereich von 950 nm bis 1900 nm bei einer spektralen Auflösung von 10 nm. Damit ist die Technologie für die Analyse unterschiedlichster organischer Verbindungen und vielfältige Anwendungen wie zum Beispiel tragbare Messgeräte für die Nahrungsmittelindustrie, mobile medizintechnische und pharmakologische Analysegeräte, industrielle in situ-Qualitätstests oder Frühwarn- und Überwachungssysteme in Sicherheitsanwendungen und Gebäudemanagement interessant.

Viele für die Sicherheitsüberwachung bedeutsame chemische Stoffe haben ihre charakteristischen Absorptionslinien allerdings nicht im nahen Infrarot, sondern im mittleren Infrarotbereich (3 – 12 µm). Um auf mögliche Risiken, zum Beispiel entweichende Giftstoffe, über spektroskopische Analysen einschätzen und rechtzeitig reagieren zu können, entwickeln das Fraunhofer IPMS und das Fraunhofer-Institut für Angewandte Festkörperphysik IAF gemeinsam eine neuartige, handliche durchstimmbare monochromatische Strahlungsquelle für den mittleren Infrarotbereich.

Diese bildet die technologische Grundlage für die Entwicklung handlicher Spektrometer, die in der Lage sind, die Konzentration verschiedener Gefahrstoffe schnell und vor Ort zu ermitteln. Herzstück des Systems ist die Kombination aus einem im mittleren Infrarot breitbandig anregbaren Quantenkaskadenlaserchip, der am Fraunhofer-IAF entwickelt wurde, mit einem MEMS-Scanner basierten lichtstarken Beugungsgitter. Um das emittierte Licht des Quantenkaskadenlasers verändern beziehungsweise durchstimmen zu können wird das mikromechanisch gefertigte Bauelement mit einem Durchmesser von 5mm in dem externen Resonator des Quantenkaskadenlasers platziert.

Es erlaubt das Durchfahren der Laserwellenlänge mit einer Frequenz von 1000Hz und einem Durchstimmbereich von bis zu 20 Prozent der Zentralwellenlänge. Im Zeitmultiplex kann so die Probe mit unterschiedlichen Wellenlängen bestrahlt und mittels des »Fingerabdrucks« auf Art und Konzentration der Gefahrstoffe geschlossen werden.

Neben Verfahren der optischen Spektroskopie arbeitet das Fraunhofer IPMS an der spektroskopischen Untersuchung mittels Ultraschall. Diese ermöglicht insbesondere Aussagen über physikalische Kenngrößen von Materialien sowie chemische Analyse von Dispersionen. So sind über die Analyse der frequenzabhängigen Dämpfung und Schallgeschwindigkeit Aussagen über Qualität und Zusammensetzung von Ölen, Alkohol-Wasser-Gemischen oder sonstiger Flüssigkeiten möglich, eine ideale Ergänzung der optischen Spektroskopie.

Kapazitive mikromechanische Ultraschallwandler (CMUT) können in diesem Anwendungsbereich Wegbereiter für neuartige hochkompakte Umweltmesssysteme sein. Im Gegensatz zu gängigen piezoelektrischen Ultraschallelementen werden CMUTs mittels mikromechanischer Herstellungsverfahren gefertigt und ermöglichen extrem kompakte Geräte. Durch eine monolithische Integration der Sensoren mit CMOS-Schaltungen können komplette Analysesysteme auf einem einzigen Chip aufgebaut werden. Für die akustische Spektroskopie sind CMUTs ideal geeignet, da sie in flüssige Medien extrem effizient den Schall einstrahlen können, die Detektion hochsensitiv ist und eine große Frequenzbandbreite verwendet werden kann.


Verwandte Artikel

Fraunhofer IPMS (Institut für Photonische Mikrosysteme)

Forschung