Mit radioaktiven Substanzen

Mini-Labor bekämpft Krebs

24. Januar 2023, 11:58 Uhr | Ute Häußler
Radiopharmaka kommen zum Einsatz, wenn gegen einen Tumor Chemotherapie, Operation oder Bestrahlung wirkungslos geblieben sind. In mikrophysiologischen Systemen lassen sich 3D-Tumormodelle in einer realistischen Mikroumgebung kultivieren, was die Testung exakter und gleichzeitig einfacher macht.
© Amac Garbe / Fraunhofer IWS

Wenn gegen einen Tumor weder Chemotherapie oder Operation noch Bestrahlung helfen, kommen Radiopharmaka zum Einsatz. Diese müssen aber gestestet werden: Künstliche Organstrukturen und Tumore im Chip-Format sind eine Alternative zu Tierversuchen.

Am meisten kommen in deutschen Medizinforschung Laboren Mäuse, Fische und Ratten zum Einsatz. Doch neben dem Tierschutz fehlen im Tiermodell oft wichtige Bezüge zum menschlichen Organismus. Für die Krebsdiagnostik arbeiten Forschende des Fraunhofer IWS und des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) jetzt an mikrophysiologischen Systemen, die mit kultivierten humanen Mini-Organoiden die Funktionsweise des menschlichen Organismus nachahmen.

In ihrer Arbeit beschäftigen sich Wiebke Sihver und ihre HZDR-Kolleginnen und Kollegen mit der Entwicklung und Anwendung radiomarkierter Substanzen für die Krebsdiagnostik und insbesondere auch ‑therapie. Diese Radioliganden sind mit einem radioaktiven Nuklid (Radionuklid) ausgestattet und binden an ein Zielmolekül, im Fall von Krebs an bestimmte Zielstrukturen des Tumors. Damit wirkt das Radiopharmakon direkt am Tumor. Umgebendes gesundes Gewebe wird geschont.

Mini-Labore als Testareal

Bereits seit über zehn Jahren beschäftigen sich die Forschenden am Fraunhofer IWS mit den Mini-Laboren. Mit diesen mikrophysiologischen Systemen im Format einer Tablettenschachtel lassen sich Organfunktionen oder auch Krankheitsprozesse mit Hilfe von Zellkulturen künstlich darstellen. Ventile und Kanäle simulieren das Gefäßsystem, eine kleine Pumpe den Herzschlag. Gefertigt werden die mikrophysiologischen Systeme aus übereinander geschichteten Kunststofffolien. In diese werden mittels Laser Blutbahnen und Kammern geschnitten. In speziellen Modulen legen die Anwender später Zellkulturen an, die bis zu einem Monat in den Mikrosystemen überleben können. In dem Miniatur-Labor zirkuliert derweil das Blut in Form von Nährmedium, das die Zellen mit Sauerstoff und Nährstoffen versorgt. Vor ein paar Jahren noch war in diesem Rahmen lediglich die Darstellung zweier Organe möglich. Heute sind es bereits vier, die sich gleichzeitig auf diesen neuartigen Multiorgan-Chips simulieren lassen. 

Als sich das HZDR-Team an das Fraunhofer IWS wandte, erkanntenForschenden sehr schnell das Potenzial für eine neue Anwendung. In der Entwicklung von Radiopharmaka kamen Multiorgan-Chips bis dato noch nicht zum Einsatz.

Tierversuche reduzieren

Ziel der gemeinsamen Forschungsarbeit ist es, 3D-Tumormodelle auf einem Chip zu platzieren, der in der Folge die Testung von Radiopharmaka vereinfacht und günstiger macht. Erste Herausforderung war es deshalb, aus einer zweidimensionalen Zellkultur ein dreidimensionales Zellaggregat herzustellen – ein Sphäroid, das Tumorgewebe imitieren kann. »Damit können wir die Charaktereigenschaften des Mikro-Tumors in unserem System integrieren«, erklärt Entwicklungsingenieur Stephan Behrens vom Fraunhofer IWS. Perspektivisch soll diese Darstellung auf dem Chip immer detailreicher werden, beispielsweise durch den Einsatz patientenspezifischer Zellen oder zur Bestimmung neu entdeckter, charakteristischer Proteine an verschiedenen Tumorzelltypen, die sich radiopharmakologisch detektieren lassen.
 

Anbieter zum Thema

zu Matchmaker+
Medizntechnik Krebs Tierversuche Mini-Labor Radioaktiv
Die ersten Tests mit den Multiorgan-Chips zeigten positive Ergebnisse. Die Bindung bekannter Substanzen an den Tumorsphäroiden funktionierte bereits. Geplant ist, die mikrophysiologischen Systemen um ein Nierenmodell und ein Leberorganoid zu erweitern.
© Amac Garbe / Fraunhofer IWS

Die ersten Tests von Wiebke Sihver und ihrem Team mit den Multiorgan-Chips zeigten bereits positive Ergebnisse. Zum Einsatz kamen dabei zunächst bekannte Substanzen, deren Eigenschaften sich auf dem Chip gut beobachten lassen. »Wir sahen, dass die Bindung an den Tumorsphäroiden bereits funktioniert«, schildert sie. Geplant ist, auf den Chips auch ein Nierenmodell und ein Leberorganoid darzustellen. Insbesondere die Nieren gelten als dosislimitierend und spielen in der radiopharmazeutischen Forschung somit eine wichtige Rolle. »Das heißt umgangssprachlich ausgedrückt: Wenn der Radioligand festhängt, kann das zu Schädigungen in der Niere, aber auch in den Leberzellen führen«, erläutert die Wissenschaftlerin. Die Tests solcher Stoffe mittels Zellkulturen auf einem Chip durchzuführen, sei deshalb eine vielversprechende Alternative. Verlaufen die Versuche im Projekt weiterhin positiv, sollen sich später auch unbekannte Radioliganden in den Systemen prüfen lassen. »Das spart eine große Anzahl an Tierversuchen«, sagt Sihver. Denn auch wenn sich mit ihrer Forschung Tierversuche noch nicht komplett vermeiden lassen, arbeiten die Forschenden daran, ihre Zahl zu reduzieren.

Florian Schmieder sieht durch die Neuentwicklung künftig viele Vorteile für die Patientinnen und Patienten. »Wir könnten patientenspezifische Zellen auf einen Chip bringen und so simulieren, wie sich eine Krebserkrankung entwickelt.« Individuelle Therapien wären auf diesem Weg maßgeschneidert möglich. »Der Krebs bildet außerdem tumorspezifische Antigene, die in Tiermodellen so nicht darstellbar sind.« Auf den Chips soll auch das funktionieren. (uh)


Lesen Sie mehr zum Thema


Das könnte Sie auch interessieren

Jetzt kostenfreie Newsletter bestellen!

Weitere Artikel zu Fraunhofer IWS (Institut für Werkstoff- und Strahltechnik)

Weitere Artikel zu Medizinelektronik

Weitere Artikel zu Mikroskope f. das Labor