Atemwegsstent

Bioresorbierbar dank 3D-Druck

5. Februar 2021, 10:30 Uhr | ETH Zürich
Drei Prototypen der Atemwegsstents mit unterschiedlichen Designs
© Bild aus Paunovic N, et al. ScieAdv, 2020

3D-Stents passen sich der Anatomie des Patienten an

Eine krankhafte oder verletzungsbedingte Verengung der Luftröhre oder der Hauptbronchien kann böse enden. Patienten bekommen zu wenig Luft, sie drohen zu ersticken und brauchen oft schnellstens medizinische Hilfe.

Um solche Verengungen zu beheben, setzen Chirurginnen und Chirurgen den Betroffenen röhrenförmige Implantate, sogenannte Stents, aus medizinisch verwendbarem Silikon oder Metall ein. Diese verschaffen den Patienten zwar rasch Besserung, doch die Implantate haben Nachteile: Metallstents müssen mit einigem Aufwand operativ entfernt werden, was Patienten erneut belastet. Silikon-​Stents wiederum wandern weg von der Stelle des Einsetzens. Der Grund dafür ist, dass die Implantate nicht an die Anatomie eines Patienten angepasst sind.

3D-gedruckte bioresorbierbare Atemwegsstents

Ein ETH-​Forschungsteam, zusammengesetzt aus Mitgliedern der Gruppen Komplexe Materialien und Drug Formulation & Delivery, hat nun gemeinsam mit Forschenden des Universitätsspitals und der Universität Zürich einen Atemwegsstent entwickelt; dieser ist auf einen Patienten zugeschnitten und bioresorbierbar, baut sich also nach dem Einpflanzen nach und nach ab. Hergestellt werden diese Stents mit einem 3D-​Druckverfahren (»Digital Light Processing«, DLP) und eigens zu diesem Zweck angepassten, lichtempfindlichen Harzen.

Zuerst erstellen die Forschenden eine Computertomografie eines spezifischen Abschnitts der Atemwege. Darauf basierend entwickeln sie ein digitales 3D-​Modell des Stents. Die Daten werden an den DLP-​Drucker weitergegeben, der den massgeschneiderten Stent Schicht für Schicht herstellt. Beim DLP-​Verfahren wird eine Bauplattform in eine Wanne voller Harz getaucht. Die Plattform wird dann gemäss dem digitalen Modell an den gewollten Stellen mit UV-​Licht belichtet. Dort, wo Licht aufs Harz auftrifft, wird es hart. Die Plattform wird ein wenig gesenkt und die nächste Schicht belichtet. So entsteht das gewünschte Objekt Schicht für Schicht.

Spezielles Harz entwickelt

Bislang konnten mit der DLP-​Technik und bioabbaubaren Materialien nur steife und spröde Objekte hergestellt werden. Die ETH-​Forschenden entwickelten deshalb ein spezielles Harz, welches nach der Belichtung elastisch wird. Dieses basiert auf zwei verschiedenen Makro-​Monomeren. Die Materialeigenschaften des damit erzeugten Objekts lassen sich über die Länge (Molekulargewicht) der eingesetzten Monomere sowie über deren Mischverhältnis steuern, wie die Forscherinnen und Forscher in ihrer jüngsten Studie in »Science Advances« aufzeigen.

Sobald UV-​Licht auf das Harz trifft, verknüpfen sich die Monomere untereinander und bilden ein Polymer-​Netzwerk. Da das neu entwickelte Harz bei Raumtemperatur zu zähflüssig ist, mussten die Forschenden es bei Temperaturen von 70 bis 90 Grad verarbeiten.

Die Forschenden stellten mehrere Harze mit unterschiedlichen Monomeren her und testeten daraus gefertigte Prototypen, ob das Material zellverträglich und biologisch abbaubar ist. Auch prüften sie die Prototypen auf ihre Elastizität und auf mechanische Belastung wie Druck und Zug. Das Material mit den gewünschten Eigenschaften verwendeten die Wissenschaftler schließlich für die Herstellung von Stents, welche an Kaninchen getestet wurden.

Das Einsetzen der Stents erforderte zudem ein spezielles Instrument, da die 3D-​gedruckten Objekte gefaltet eingebracht werden müssen. Dies setzt voraus, dass sich die Implantate weder knicken noch quetschen lassen und dass sie sich an ihrem Einsatzort perfekt entfalten. Um mithilfe medizinischer Bildgebung nachverfolgen zu können, wo sich der Stent beim Einsetzen befindet, bauten die Forschenden Gold in dessen Struktur ein. Das macht die Stents stabil, ändert aber nichts an deren Biokompatibilität.

Links

(me)


Lesen Sie mehr zum Thema


Jetzt kostenfreie Newsletter bestellen!

Weitere Artikel zu ETH Zürich