Laborminiaturisierung

Forscher entwickeln nadelspitzengroßes Miniaturlabor

13. Februar 2020, 8:00 Uhr | Universität Stuttgart
Elektronenmikroskopische Aufnahme einer leeren Mischdüse (links), sowie röntgentomographische Funktionsanalyse (rechts). Das Strömungsverhalten der Flüssigkeit wurde mikrometergenau aufgelöst
© Universität Stuttgart/IBBS

Forschung | Forscher haben eine Methode entwickelt, mit der sich ein Labor auf die Größe einer Nadelspitze miniaturisieren lässt. Sie setzen dabei auf Kurzpulslaser, Fotolack und 3D-Druck. Die Methode eignet sich für biomedizinischer Anwendungen, etwa für minimalinvasive Operationstechniken.

3D-Druck hat in den letzten Jahren die Herstellung von komplizierten Formen revolutioniert. Mithilfe von serieller Auftragung, bei der Punkt für Punkt oder Linie für Linie geschrieben wird, können auch komplexe Bauteile schnell und einfach realisiert werden. Um diese Methode nun auch für die Laborminiaturisierung zu erschließen, stellte das Forscherteam, bestehend aus Wissenschaftlern der Universität Stuttgart und des Center for Free-Electron Laser Science (CFEL) in Hamburg, mithilfe eines Kurzpulslasers in Kombination mit optischem Fotolack kompakte Prozessoren für Flüssigkeiten her, die kaum größer sind als die Spitze eines menschlichen Haares. Dabei wurden integrierte Schaltkreise für Flüssigkeiten als Netzwerk feinster Kanäle konstruiert.

Röntgenblitze durch winzigen Wasserstrahl

Die große Präzision des neuen Fertigungsverfahren erlaubte es dem Team, Spezialdüsen für die räumliche Strukturauflösung biologischer Moleküle zu optimieren. Dazu erzeugten die Forscher einen Wasserstrahl mit einem Durchmesser von weniger als einem tausendstel Millimeter, um die biologischen Moleküle mit Röntgenblitzen zu durchleuchten. Aus vielen Einzelbildern kann die atomare Architektur der biologischen Moleküle mit hoher Qualität errechnet werden.

Ferner gelang es den Wissenschaftlern, besonders effiziente Mischer zu optimieren, so dass biochemische Reaktionen kontrolliert gestartet werden können. Das Team plant, diese zur Aufzeichnung von Serien-Schnappschüssen von biochemischen Reaktionsabläufen zwischen Enzymen und ihren Substraten zu verwenden. Der Röntgenlaser ließe sich als eine Art Filmkamera verwenden, um molekulare Dynamiken wie etwa die Interaktion eines medizinischen Wirkstoffs mit dem Zielprotein besser zu verstehen.

Anwendungen in der Medizin

Die miniaturisierten Düsen und Mischer ermöglichen aber auch ganz neuartige biomedizinische Anwendungen. So lassen sich mit der Technologie zum Beispiel haarfeine, flexible Endoskope verwirklichen, mit denen man auch in kleinsten Körperöffnungen oder Maschinen Operationen und Untersuchungen vornehmen kann.

Ebenso kann die Formulierung von Medikamenten verbessert werden. Zum Beispiel ist es heute noch technisch schwierig, Wirkstoffe für Asthma-Patienten optimal zu zerstäuben. Aus handelsüblichen Inhalatoren gelangt nur ein sehr geringer Anteil des Wirkstoffes tatsächlich in die Lunge des Patienten. Die kompakten 3D-Düsen sollen ein gleichmäßigeres Versprühen ermöglichen und so ungewollte Nebenwirkungen gerade bei chronischen Patienten reduzieren. (me)

Schlagworte: Minitaturisierung, Fertigungsverfahren, 3D-Druck


Lesen Sie mehr zum Thema


Jetzt kostenfreie Newsletter bestellen!

Weitere Artikel zu Universität Stuttgart